```
Metric measures
Solids
                                                               Household to metric
1 milligram (mg) = 1,000 micrograms (mcg)
                                                               equivalents
1 \text{ gram (g)} = 1,000 \text{ mg}
                                                               1 \text{ teaspoon (tsp)} = 5 \text{ ml}
1 \text{ kilogram (kg)} = 1,000 \text{ g}
                                                               1 tablespoon (tbs) = 15 ml
                                                               1 \text{ ounce } (oz) = 30 \text{ ml}
Liquids
                                                               2 \text{ tbs} = 30 \text{ ml}
1 milliliter (ml) = 1 cubic centimeter (cc)
                                                               1 \text{ oz} = 30 \text{ g}
1 \text{ ml} = 1,000 \text{ microliters (mcl)}
                                                               1 pound (lb) = 454 g
1 cc = 1,000 mcl
                                                               2.2 lb = 1 kg
1 \text{ liter } (L) = 1,000 \text{ ml}
                                                               1 inch = 2.54 centimeters (cm)
1 L = 1,000 cc
Temperature conversions
To convert Celsius (°C) to Fahrenheit (°F)
Use the following equation:
(^{\circ}C \times 9/5) + 32 = ^{\circ}F
Example: 38 °C times 9/5 is 68.4; 68.4 plus 32 equals 100.4 °F.
To convert °F to °C
(^{\circ}F - 32) \times 5/9 = ^{\circ}C
Example: 98.6 °F minus 32 is 66.8.; 66.8 times 5/9 equals 37 °C.
Calculating dosages and administration rates
Concentration of solution in mg/ml = \frac{mg \text{ of } drug}{ml \text{ of solution}}
Infusion rate in mg/minute = \frac{\text{mg of drug}}{\text{ml of solution}} \times \text{flow rate (ml/hour)} \div 60 \text{ minutes}
Concentration of solution in mcg/ml = \frac{\text{mg of drug} \times 1,000}{\text{ml of solution}}
Infusion rate in mcg/minute =
                 \frac{\text{mg of drug} \times 1,000}{\text{ml of solution}} \times \text{flow rate (ml/hour)} \div 60 \text{ minutes}
```

Infusion rate in ml/hour = ml of solution + 60 minutes

Infusion rate in ott/minutes = ml of solution

Admin to the sol

Infusion rate in mcg/kg/minute =

 $Infusion \ rate \ in \ gtt/minutes = \frac{ml \ of \ solution}{time \ in \ minutes} \times drip \ factor \ (gtt/ml)$

 $\frac{\text{mg of drug} \times 1,000}{\text{ml of solution}} \times \text{flow rate (ml/hour)} + 60 \text{ minutes} + \text{weight in kg}$