

HYBRID MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION (MOPSO) FRAMEWORK FOR SUSTAINABLE COMMERCIAL REAL ESTATE PORTFOLIO ALLOCATION: AN EMPIRICAL PERFORMANCE ANALYSIS

B S Giridhar^{1,*}, S Sai Ganesh²

¹Research Scholar (PhD), Dayananda Sagar university, SCMS, Bengaluru, giridhar.bs-rs-mgt@dsu.edu.in, +91 8879667319

²Professor of Management, Dayananda Sagar university, SCMS, Bengaluru, dr.saiganesh@dsu.edu.in, +91 9994780365

Abstract

REITs are becoming highly significant investment vehicles that need advanced analytical techniques to assess the performance of such investments, to construct a portfolio and to manage risks. The study is on the complex issue of building profitable and responsible commercial real estate portfolios. Conventional optimization models tend to be ineffective in optimizing multiple and sometimes competing objectives, including maximizing returns, risk reduction and sustainability- with acting in accordance with real-world constraints on investments. The preliminary stochastic simulation of portfolios indicates the lack of efficiency of traditional methods, as only a guided optimization strategy can lead to better results. In this direction, a sophisticated artificial intelligence method that we present is a Hybrid Multi-Objective Particle Swarm Optimization framework (MOPSO). The originality of this paper is that it is the first to utilize this hybrid form of MOPSO framework to deal directly with illiquid commercial real estate assets, specifically, and explicitly, to incorporate the ESG performance as a key optimization goal in addition to common financial performance measures (risk and return). In addition, this method has a differentiation in the way it introduces realistic market restrictions as it considers property-specific features and illiquidity, which are often ignored in traditional models. Model is tested on a sample of 20 properties, as there is intention to present an applicable decision-making tool. A strong framework that allows investors and fund managers to develop financially superior portfolios, and also help the industry achieve societal and environmental goals, should be the result of this, thus balancing the current investment strategies with the need of sustainable development in the real estate market. maximizing returns, minimizing risk, and investing sustainably, and all within the framework of real-life investment regulations. The first step in the study is a random simulation to construct the possible portfolios and this proves that the possibility of finding a good portfolio by chance is inefficient and results below par. This observation explains why a smarter and guided approach is necessary. We thus present the suggestion of applying an advanced type of artificial intelligence method known as Hybrid MOPSO. The new contribution of the paper is that it is the first attempt to apply a hybrid form of MOPSO framework to direct, commercial real estate assets, explicitly considering ESG performance as the main optimization goal, alongside risk and return. The given computer algorithm is engineered to delve across the most optimal portfolios, which would give a compromise between financial performance and sustainability objectives. We prove a viable direction by applying our model to a sample sample consisting of 20 properties. The anticipated result of this study is an effective decision model that has the potential of automatically creating a financial portfolio that is not only profitable but responsive to societal and environmental goals to streamline the current investment principles and requirements to the needs of tomorrow. The method is unique because it takes into account the real-life issues like property-specific properties and market illiquidity that are usually ignored in traditional portfolio optimization models. With such a subtle incorporation, it is possible to

produce portfolios that do not only have the theoretical optimality, but also become feasible in Real estate.

Keywords: Commercial Real Estate, Portfolio Allocation, Multi-Objective Optimization, Particle Swarm Optimization, Hybrid Algorithms, Sustainability, ESG Factors, Risk-Return Analysis, Artificial Intelligence, Investment Management, Real Estate Investment Trusts.

Introduction

This review is inspired by resource to explore the methodological environment of the studies on research in REIT and portfolio optimization, as a comparatively young institution in India, which first emerged in 2017, and regulated by SEBI, it can be either traded or untraded trust. REIT it should act in the best interest of its customers or rather their Investors, the investor behaviour generally aims at maximisation of the gains of investment and value increase. The three players share the interests of maximisation of returns as well as minimisation of risks. The major stakeholders of the Real Estate Investment Trust (REIT) ecosystem can be divided into four major groups, which include the REIT entities, investors, property stakeholders, and regulators.

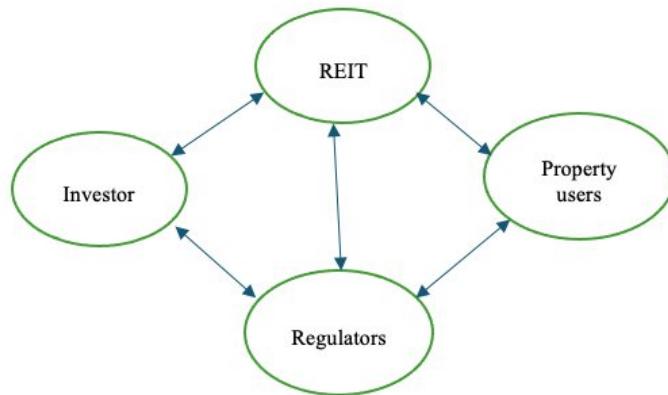


Figure 1: REIT ecosystem Source: Authors

The fast changes experienced within the commercial real estate (CRE) industry have brought forth a number of issues on the part of portfolio management in which an investor is not only required to focus on the economic aspects of financial profitability, but also manage exposure to risks and the need to comply with environmental, social, and governance (ESG) requirements. Traditional portfolio optimization models in the form of the mean-variance model of Markowitz (1952) have been traditionally used in the context of investment decision-making. These classical methods, however, presuppose liquidity, continuous traded assets and a one-objective framework which is based on return-risk efficiency. These assumptions do not suit well in the context of the REIT / CRE, where properties are generally illiquid, and long-term assets that are affected by heterogeneous property specific and sustainability related characteristics. Over the last couple of years, a shift in the investment environment has occurred due to the incorporation of sustainability goals in the investment decision-making process. Available institutional investors and real estate funds are also more likely to be expected to match their portfolios with larger sustainability goals or climate pledges, requiring an optimization framework capable of balancing various and usually antagonistic targets. This means that the portfolio optimization of real estates should not only consider the traditional trade-off between risk and return but consider ESG performance alongside liquidity constraints and realism in the market explicitly.

Purpose

The swarm intelligence and especially metaheuristic algorithms have become predominant in non-convex, complex, multi-objective optimization problems. Nonetheless, the pure PSO frameworks are usually limited by the premature convergence and the inability to sustain diversity of Pareto-optimal solutions. To address these issues, hybrid versions of PSO which extend it with other heuristic approaches (e.g., genetic mutation, crossover, or adaptive inertia) have been found to perform better both in financial and engineering applications. This paper presents a Hybrid Multi-Objective Particle Swarm Optimization (Hybrid MOPSO) model which is directly focused on illiquid commercial real estates portfolios. This study, in contrast to the traditional MOPSO used in liquid financial markets, adopts property-level features, including rental yield, occupancy, leverage, and ESG ratings as the variables of core optimization. The proposed model will have three main goals at the same time: Maximization of portfolio payoff, Eliminating portfolio risk, and Optimizing sustainability (ESG score).

The framework employs real-world conditions such as illiquidity limits, exposure limits within the sector and diversification requirements of a property. The model is illustrated with a sample of 20 commercial properties, of REIT which are empirically proved. The anticipated value is it should offer both methodological and practical contribution, a replicable AI-enabled decision-making tool, which produces Pareto-efficient, financially viable, and sustainability-aligned commercial real estate portfolios.

Literature review

The Real Estate Investment Trusts (REITs) have their specific niche in the investment portfolio due to their ability to combine the liquidity and diversification and revenue affinity of real estate. The developments in this area have shifted toward the mean-variance optimization (Markowitz, 1952) to the more sophisticated model of multi-objective and machine-learned models that consider ESG factors (Patel and Sharma, 2021; Gupta and Basu, 2021). Qualitative and quantitative paradigms do not exist separately- qualitative work gives us a context and quantitative research gives us computational answers to optimization. Qualitative research identifies institutional, investor behavioural, and regulatory environment of REIT markets (Sengupta and Sharma, 2020; Kumar and Rastogi, 2018). These approaches define REIT development drivers, governance issues and ESG adoption processes. The relevance of sustainability metrics in ESG-oriented qualitative research has been noted (Gupta and Basu, 2021; Chen and Aspermont, 2022) and it should be considered when designing quantitative models. There are strengths such as contextual richness, but the qualitative with insights do not have the ability to optimize numbers. Previous quantitative research prevails in the REIT portfolio optimization. Mean-variance (Markowitz, 1952) and CAPM (Elbannan, 2015) were used as early models, and volatility models (Lee and Pai, 2010) and robust optimization follow (Doan et al., 2015). Genetic Algorithm (Goldberg, 1989; Deb, 2001) and Swarm Particle Optimization (Kennedy and Eberhart, 1995) are metaheuristic algorithms that allow the nonlinear space to be searched in a flexible manner. Trade-off visualization between risk, return and ESG goals is possible using Multi-objective PSO (MOPSO) (Coello & Lechuga, 2002) and Pareto-front analysis (Deb, 2001; Zitzler and Thiele, 1999). Subsequently, the Monte Carlo simulation has been proposed to be used with stochastic modelling of portfolio risk (Later, papers proposed that Value-at-Risk (VaR) and Conditional VaR can be estimated with the assistance of Monte Carlo simulation, Deng et al., 2013). It reflects asymmetry and tail-risk behavior in REITs (Bonato et al., 2022).

However, the majority of the studies implement it after optimization; when Monte Carlo is incorporated directly into MOPSO it may produce more precise Pareto-efficient frontiers. Amid climate change and the requirement to study the sustainability component, the integration of ESG in portfolios, which has previously been screening, has developed into multi-objective optimization (Surtee & Alagidede, 2023). The use of ESG metrics in REITs is not consistently exercised (Li et al., 2021). ESG goals may be either limitations or autonomous optimization areas. Another important innovation in the literature is the introduction of ESG factors in the optimization of a portfolio. Patel and Sharma (2021) analyzed the ESG integration in real estate in India and showed that it has become increasingly significant with institutional investors. Gupta and Basu (2021) presented the sustainable development of real estate in India, including the peculiarities of environmental and social considerations in the Indian environment. On the international level, Chen and Aspermont (2022) reported global trends in ESG integration, and Ghosh and Jintanapakamont (2022) presented evidence in the form of comparisons of Asian REIT markets, such as India and Thailand.

The level of external shock performance on REIT performance has also been researched widely. Rastogi and Sharma (2022) studied the impact of the COVID-19 pandemic on Indian REITs, and the authors found out that the volatility was high, and optimization frameworks should be strong enough to be able to combat the disruption on the market. Chaudhuri and Ghosh (2021) discussed the volatility spillover effects in the relationship between REITs and stock markets in India, which are significant in risk modeling of optimization algorithms. The literature on portfolio optimization has also been enhanced due to behavioral aspects of investing. Kapoor and Prosad (2017) reported the behavioral biases in the Indian stock market, whereas Narayan and Sharma (2015) noted the role of data frequency and market microstructure in optimization models. Bansal and Khanna (2020) investigated the topic of algorithmic trading and portfolio optimization in a new market, so the article represents a context-specific contribution to the Indian market. The use of these sophisticated methods of optimization has been on the increase in the Indian environment as the Indian capital markets are evolving. The results of Agnihotri and Gupta (2022) prove the effectiveness of hybrid PSO methods in optimizing Indian REITs portfolios, and the algorithm is capable of managing the specifics of the Indian real estate market. Likewise, Verma and Singh (2019) tested multi-objective evolutionary algorithms on Indian equity portfolios, and found out that it works even better than conventional strategies. With the advent of the Real Estate Investment Trusts in India, as Kumar and Rastogi (2018) and Sengupta and Sharma (2020) study, new prospects were opened to the application of sophisticated optimization methods to real estate portfolios. Within the particular context of an Indian real estate portfolio optimization, Bose and Roy (2021) designed a multi-objective model of the Indian real estate, which considers the challenges peculiar to the sphere, such as illiquidity and market inefficiencies. Mukhopadhyay and Das (2018) gave detailed performance measurement models of Indian REITs, which set benchmarks as optimization models. The article by Reddy and Kumar (2020) about sustainable investing in the emerging markets provided useful information about the risk-return-ESG trade-offs of the developing markets such as India. Dynamic modelling is then required due to the key issue of dynamic ESG measurement-scores vary as property is retrofitted, governance reforms or tenant policies are changes. Qualitative studies can determine why sustainability and regulation are relevant in the context of REIT ecosystem; quantitative models can be used to find the optimal way to achieve them. Hybrid methods, like PSO-GA algorithm by Sharma and Kumar (2020), reduced the complexity of constraints and multiple objectives. Irrespective of these developments, there are still major gaps in research. The literature demonstrates (1) only partial incorporation of dynamic parameter estimation, real-time rebalancing functions, and overall sustainability measures in the current systems of optimization (2) little has been

done to investigate the hybrid algorithms that would be best suited when considering the peculiarities of the new markets such as India where market efficiency, regulatory frameworks, and investor behavior are very different as compared to the developed markets.

To ascertain the recent trends we have checked past REIT focused Studies: 24 out of 65 (36.9) Time Period: 2000-2023. The summary of the quantitative methods applied can be observed in table below:

Authors	Year	Primary Method(s)	Secondary Method(s)	Application Area	Key Technique Category
Swinkels L	2023	Empirical Evidence Analysis	Statistical Testing	Real Estate Tokens	Statistical Methods
Bonato et al.	2022	Realized Volatility Forecasting	Realized Skewness, Realized Kurtosis	REIT Volatility Prediction	Time Series Analysis
Shen J	2021	Distress Risk Analysis	Statistical Testing	Equity REIT Returns	Statistical Methods
Shen et al.	2021	Beta Anomaly Analysis	Statistical Testing	REIT Market Analysis	Statistical Methods
Loo WK	2020	Ensemble Learning	Technical Analysis	Japan REITs Prediction	Machine Learning
Loo WK	2019	Artificial Neural Network	Predictability Analysis	HK-REITs Returns	Neural Networks
Mueller & Mueller	2019	Return Cycle Analysis	Mixed Asset Analysis	Real Estate Portfolio	Statistical Methods
Hausler et al.	2018	Sentiment Analysis	Machine Learning	Real Estate Analysis	NLP + Machine Learning
Hansz et al.	2017	Substitutability Analysis	Statistical Testing	REIT Portfolio Analysis	Statistical Methods
Wang et al.	2016	Support Vector Machine	Vector Auto-regression	S-REITS Performance Forecast	Machine Learning
Anderson et al.	2015	Statistical Analysis	Performance Metrics	REIT Performance Analysis	Statistical Methods
Ling & Naranjo	2015	Information Transmission Analysis	Dynamics Modeling	Real Estate Markets	Time Series Analysis
Feng & Li	2014	Stepwise Regression	Support Vector Regression	REIT Portfolio Construction	Regression Analysis
Olanrele et al.	2014	Dividend-based Forecast	Benchmark Analysis	REIT Performance	Statistical Methods

Authors	Year	Primary Method(s)	Secondary Method(s)	Application Area	Key Technique Category
Block RL	2012	Investment Analysis	-	REIT Investment	Traditional Finance
Cici et al.	2011	Fund Holdings Analysis	Trade Analysis	REIT Fund Management	Statistical Analysis
Li & Lei	2011	Determinant Analysis	Information Analysis	REIT Pricing	Statistical Methods
Lee & Pai	2010	GARCH Model	Skew-GED Distribution	REIT Volatility Prediction	Time Series Modeling
Cheng & Roulac	2007	Predictability Analysis	Statistical Testing	REIT Characteristics	Statistical Methods
Lertwachara K	2007	Genetic Algorithm	Stock Selection	REIT Selection	Evolutionary Algorithm
Sirmans et al.	2006	Management Change Analysis	Performance Investigation	REIT Management	Statistical Methods
Lee & Stevenson	2005	Mixed-asset Analysis	Statistical Testing	REIT Portfolio Integration	Statistical Methods
Lee & Stevenson	2004	Portfolio Analysis	Long-run Analysis	REIT Portfolio Strategy	Statistical Methods
Chui et al.	2003	Cross-sectional Analysis	Expected Returns Model	REIT Returns Analysis	Statistical Methods
Ling et al.	2000	Predictability Analysis	Time Variation Analysis	REIT Returns	Time Series Analysis

Table 1: Sorted REIT based papers

Further, the review of literature analysis done through Python coding and SciSpace.ai revealed that:

Method Distribution in REIT Studies:

1. Statistical Methods: 13 studies (54.2%)
2. Machine Learning: 4 studies (16.7%)
3. Time Series Analysis: 4 studies (16.7%)
4. Traditional Finance: 2 studies (8.3%)
5. Evolutionary Algorithm: 1 study (4.2%)

Recent Trends (2020-2023):

- Increased focus on machine learning applications
- Emergence of real estate tokens as new investment vehicle
- Advanced volatility forecasting techniques
- Market anomaly analysis (beta anomaly, distress risk)

The multi-objective optimization, computational intelligence, and sustainable finance convergence promise interesting opportunities to improve the portfolio management practices.

The elaboration of models that could optimize the financial returns, risk management and ESG goals at the same time but take into account the constraints of the developing markets is a good way of carrying out future studies. The present literature review provides the theoretical and empirical basis of the design of such sophisticated optimization models, in the realm of the Indian REIT portfolio management where the interplay of financial innovation and sustainable development has a significant potential in the academic and practical contributions.

Research gaps

The overall literature review indicates that there are some critical issues of research gaps in the existing body of knowledge. (1) There is a serious methodological void in the implementation of hybrid multi-objective optimization algorithm, which is specifically designed to apply in case of optimization of REIT portfolios in emerging markets, especially in India. Although many studies have been done on traditional portfolio optimization or ESG integration, not many have been done at the intersection of the two using high-order computational intelligence methods. (2) Lack of modelling frameworks to integrate concurrently the dynamic parameter estimation, real world investment constraints and all-inclusive sustainability measures into a single optimization framework. (3) The current literature mainly dwells on the developed market with very little emphasis on the nature of emerging markets such as India where the efficiency of the market and regulatory environment and investor behavior pose their own challenges and opportunities. (4) The existing optimization methods can tend to make the ESG aspects not the main objective but the constraint not being able to reflect the complex trade-offs between the financial performance and the sustainability objectives. (5) Not enough research has been done on the practical aspects of optimization algorithms implementation, e.g. computational efficiency, interpretation of solution, and real-time rebalancing of institutional investors. The literature review defines a space of an unmet hybrid, multi-objective optimization framework to meet the needs of the illiquid and sustainability-driven nature of direct commercial real estate in the emerging markets. In order to solve the abovementioned gaps (1) to (5), the methodology below introduces a Hybrid MOPSO model, which includes dynamic parameter adaptation, makes ESG a primary goal, and includes real-world constraints, which are calibrated to this asset class. The fast change in the commercial real estate (CRE) field has created new issues in the field of portfolio management where investors are to be financially profitable, manage risks simultaneously, and follow the principles of environmental, social, and governance (ESG). Traditional portfolio optimization models, like the mean-variance model created by Markowitz (1952), have traditionally been the basis of investment decision-making. There is however, an underlying assumption that these conventional methods entail liquid, continuously traded assets and single objective framework that is focused on efficiency in terms of returns and risk. The assumptions do not fit in the REIT / CRE area, where assets are often illiquid, long-term and depend on heterogeneous property-varying and sustainability-varying characteristics. The adoption of sustainability conditions into financial decisions has revolutionized the investment world in the last few years. Institutional investors and real estate funds are growing an ever-increasing call to balance their portfolio with larger sustainability goals and climate pledges, which requires optimization systems that may take into consideration various and often competing goals. A real estate portfolio optimization policy, therefore, should not merely focus on the traditional trade-off

between risk and return, but incorporate explicitly ESG performance as well as liquidity constraints and market realism.

Methodology

The originality of the proposed Hybrid MOPSO method is the combination of various innovative components that can fill these gaps in the research. The construction of the framework puts in place a mechanism of selection of solutions allowing REIT portfolio managers to move along the Pareto front, depending on their individual risk preferences and sustainability goals, which bridges the gap between theoretic optimization and the process of making investment decisions. Such a complete combination of sophisticated computational tools and specific knowledge of the domain is a major step forward in the sustainable investment practice, as well as in the theory of portfolio optimization. The approach is based on financial, operational, and sustainability aspects, which are combined into a multi-objective optimization framework. The process of analysis has three steps: Preparation of data and estimation of parameters, Development of a tri-objective optimization model, and Implementation of the Hybrid MOPSO algorithm to solve Pareto-optimal portfolios. The study aims at an investigative hybrid AI methodology, which incorporates the ability of classical PSO to explore the search space with exploitation capabilities as well as evolutionary operators (genetic mutation and elitist re-selection) to increase diversity and convergence within the multi-objective search space.

The most important components of the frame work that has been adopted are:

- (1) The framework proposes a specialized hybrid algorithm that integrates the global search power of Particle Swarm Optimization and the local search power of Genetic Algorithms operators which are pure multi-objective optimization of a sustainable REIT portfolio.
- (2) The methodology includes a dynamic parameter adjustment process, which modifies the parameters of the algorithm in real-time, depending on the convergence properties and the variation of the solution, which improves the efficiency of calculations and the quality of the solutions.
- (3) The framework is the only model that combines three main goals maximization of financial returns, minimization of risks, and maximization of ESG scores in a Pareto-optimal framework and views sustainability as an optimization goal instead of a constraint.
- (4) The methodology has been specifically tuned to the Indian REIT market, with local market features, regulatory limits and practices of investment being brought into the fore that is not similar to developed markets.
- (5) It has an advanced constraint management system that accommodates real-world investment constraints as position sizing restrictions, sector diversification constraints and consideration of transaction costs with the inclusion of Monte Carlo simulation in multi-objective PSO systems.

Research objectives

Maximization Goals - Financial Performance Maximization. Optimize REIT property expected portfolio returns. Maximize risk-adjusted returns using the Sharpe ratio maximization. Realize high total returns during the duration of investments.

Risk Management/Mitigation. Reduce portfolio beta and maximum risk. Carry out efficient diversification in property sectors. Position size risk- Concentration of control.

ESG Integration and Sustainability. Optimize portfolio Environmental, Social and Governance scores. Strike a balance between financial returns and long term principles of

sustainable investment. Integrate ESG considerations as fundamental optimization criterion.

Research design

Framework: Hybrid MOPSO algorithm specifically designed for REIT portfolio optimization all algorithms developed in python code.

- (1) Develop a synthetic portfolio data of about 20 properties with realistic parameter distributions using python code in the absence of portfolio wise financial standing details.
- (2) ESG Integration for incorporating sustainability factors
- (3) Data processing and Sharpe index computation
- (4) Data preparation for MOPSO analysis
- (5) Particle Swarm Optimization for Global Search
- (6) Objective Function Analysis - Shows trade-offs between competing objectives, achievement distributions, and multi-objective efficiency across Pareto solutions.
- (7) Genetic Algorithm (GA) Operators for Diversity
- (8) Probabilistic mutation operator applied after position updates with 10% mutation rate.
- (9) Multi-objective: Three Objectives Optimization Simultaneous optimization of financial return, portfolio risk, and ESG sustainability.
- (10) Multi-objective optimization for competing objectives. The framework provided solutions across the entire Pareto front, enabling informed trade-off decisions.
- (11) Constraints: Real-world Investment Constraints
- (12) Hard constraints for portfolio weights: non-negativity and budget constraint. All solutions satisfy $\sum \text{weights} = 1$
- (13) Monte Carlo: robustness testing under uncertainty
- (14) Comprehensive scenario analysis across 8 economic conditions with weighted scoring.
- (15) Scenario Weights: Realistic probability weighting applied. Stress Testing: Severe recession and market crash scenarios included
- (16) Robustness Analysis Visualization Comprehensive Robustness Analysis - Shows solution performance across economic scenarios, worst-case protection, and component correlations.
- (17) Final Optimization Summary - Shows comprehensive performance analysis, objective achievement, and overall optimization efficiency verdict.

Data description

The empirical analysis is based on a dataset representing 20 commercial real estate assets, encompassing office, retail, and mixed-use developments. For each property i , the following annual indicators are compiled:

Category	Metric	Symbol	Definition
Financial	Net Operating Income / Property Value	R _i	Expected annual return (yield)
	Standard deviation of NOI growth	σ_i	Risk or volatility
Sustainability	ESG composite score	ESG _i	Weighted average of environmental, social, and governance sub-scores
Operational	Occupancy rate	OCC _i	Stability measure

	Weighted average lease expiry	WALEi	Duration-based risk
Financial stability	Debt-to-equity ratio	Li	Leverage indicator

Table 2: Data description

The risk-free rate R_f is taken as the prevailing yield on government securities with similar investment horizon. Correlations between property-level returns (ρ_{ij}) are estimated using historical NOI growth rates or synthetic correlation matrices to capture diversification effects.

Synthetic data was generated using a Python script that created 20 properties with realistic parameter distributions:

Total Properties: 20

Sector Distribution: Office, Mixed, Industrial, Retail

Cities: Bengaluru, Chennai, Hyderabad, Delhi, Mumbai

NAV: ₹200-1200 Cr (uniform distribution)

Base AFFO yield: 4-8% of NAV

ESG scores: 0.55-0.92 , ESG scores were bounded between 0.55-0.92 to reflect the reality that even poorly performing commercial properties typically have some sustainability measures, while perfect scores are rare. This range creates meaningful differentiation for optimization.

Occupancy rates: 80-98%, WALE: 3-10 years, Debt-to-Equity: Calculated from debt (₹50-700 Cr) and equity

Adjusted Funds From Operations (AFFO) over consecutive periods An AFFO time series is a financial data series that tracks a Real Estate Investment Trust's (REIT). It is primarily used to analyze and forecast a REIT's financial health, dividend sustainability, and operational trends. The analysis transforms raw property-level AFFO time series data into optimized inputs for portfolio construction, incorporating financial returns, risk metrics, and sustainability factors AFFO time series (2019-2023) incorporated random growth with normal distribution (mean: 1-6%, std: 2-6%). AFFO yields of 4-8% reflect realistic commercial real estate returns in Indian markets, while the growth rate parameters capture both stable income and development-phase properties.

Index	Sector	City	NAV_Cr	Debt_Cr	Equity_Cr	Debt_to_Equity	Occupancy	WALE_years	ESG_score	AFFO_2019	AFFO_2020	AFFO_2021	AFFO_2022	AFFO_2023	Return_2019_2020	Return_2020_2021	Return_2021_2022	Return_2022_2023	Expected_Return	Risk	Sharpe_Ratio	Avg_A_FFO	AFFO_Yield
Property_01	Mixed	Bengaluru	575	303	265.7	1.14	0.973	4.97	0.785	37.14	35.3	34.87	35.7	39.88	-0.048	-0.013	0.024	0.117	0.020	0.071	-0.284	36.586	0.064
Property_02	Office	Chennai	1151	57	1133	0.05	0.963	4.24	0.567	50.75	49.6	53.55	54.25	57.26	-0.022	0.079	0.013	0.055	0.031	0.045	-0.192	53.088	0.046
Property_03	Industrial	Hyderabad	932	639	278.6	2.292	0.835	8.25	0.680	39.77	38.3	39.8	40.58	40.91	-0.037	0.030	0.020	0.000	0.007	0.032	-1.001	39.870	0.043
Property_04	Office	Hyderabad	799	109	651.1	0.168	0.812	8.65	0.782	56.65	57.8	59.61	64.81	69	0.019	0.032	0.087	0.065	0.051	0.031	0.353	61.564	0.077
Property_05	Industrial	Hyderabad	356	258	62.7	4.108	0.818	9.93	0.730	27.93	29.2	31.23	31.65	36.02	0.045	0.070	0.013	0.138	0.067	0.053	0.504	31.206	0.088
Property_06	Office	Delhi	356	668	50	13.35	0.803	5.89	0.867	23.76	24.5	25.47	26.55	29.26	0.029	0.041	0.042	0.102	0.054	0.033	0.422	25.900	0.073
Property_07	Industrial	Chennai	258	668	50	13.356	0.817	5.6	0.794	19.65	20.3	22.18	23.39	22.56	0.035	0.090	0.055	-0.035	0.036	0.053	-0.072	21.624	0.084
Property_08	Office	Hyderabad	1066	423	603.6	0.7	0.923	8.43	0.61	61.94	63.7	60.5	62.55	63.52	0.029	-0.050	0.034	0.016	0.007	0.039	-0.850	62.444	0.059
Property_09	Mixed	Delhi	801	461	298.8	1.542	0.813	5.39	0.576	64.49	67.1	66.18	71.29	78.88	0.041	-0.014	0.077	0.106	0.053	0.052	0.243	69.592	0.087
Property_10	Retail	Mumbai	908	342	586.7	0.582	0.857	9.52	0.780	42.04	42	40.3	42.27	40.04	-0.003	-0.041	0.048	-0.053	-0.011	0.046	-1.118	41.332	0.046
Property_11	Office	Mumbai	221	241	50	4.812	0.952	9.01	0.56	16.15	16.8	18.41	20.4	0.041	0.003	0.091	0.108	0.061	0.048	0.438	17.730	0.080	
Property_12	Industrial	Delhi	1170	264	938.5	0.281	0.804	6	0.767	52.78	56	52.79	56.21	54.97	0.060	-0.057	0.068	-0.022	0.012	0.061	-0.469	54.544	0.047
Property_13	Mixed	Delhi	1032	487	565.9	0.861	0.947	8.26	0.898	69.59	74.8	79.37	79.74	85.03	0.075	0.061	0.005	0.066	0.052	0.032	0.368	77.706	0.075
Property_14	Office	Chennai	412	539	50	10.78	0.851	8.28	0.763	28.41	28.9	28.58	29.44	30.95	0.017	-0.011	0.030	0.051	0.022	0.026	-0.695	29.256	0.071
Property_15	Office	Chennai	382	565	50	11.29	0.821	3.72	0.694	19.2	22.2	23.82	23.15	26.08	0.157	0.072	-0.028	0.127	0.082	0.081	0.516	22.892	0.060
Property_16	Mixed	Mumbai	383	563	50	11.266	0.925	9.32	0.788	21.63	27	29.53	32.32	35.42	0.246	0.095	0.094	0.096	0.133	0.076	1.231	29.172	0.076
Property_17	Office	Hyderabad	504	109	382.3	0.286	0.913	6.54	0.72	29.79	31.5	31.44	32.25	30.7	0.057	-0.002	0.026	-0.048	0.008	0.045	-0.711	31.134	0.062
Property_18	Retail	Mumbai	725	371	340.5	1.091	0.958	8.79	0.752	35.18	36	33.35	34.36	34.45	0.023	-0.073	0.030	0.003	-0.004	0.047	-0.934	34.666	0.048
Property_19	Office	Hyderabad	632	87	575.8	0.152	0.932	5.24	0.898	37.75	35.9	38.74	40.18	40.3	-0.050	0.080	0.037	0.003	0.018	0.055	-0.407	38.566	0.061
Property_20	Retail	Hyderabad	491	407	128.7	3.164	0.945	9.27	0.693	34.58	35.4	34.12	35.55	32.08	0.025	-0.037	0.042	-0.098	-0.017	0.063	-0.898	34.352	0.070

M

Table 3: Synthetic data was generated using Python code . Source: by authors

- w_i : Allocation weight assigned to property i

- $w = [w_1, w_2, \dots, w_n]^T$: The portfolio weight vector to be optimized.

Let w_i denote the allocation weight assigned to property i .
 The optimization model seeks to determine the weight vector

$w = [w_1, w_2, \dots, w_n]$ that simultaneously optimizes multiple objectives under investment constraints.

Objective 1: Maximize portfolio return

$$\text{Maximize } f_1(w) = E[R_p] = \sum_{i=1}^n w_i R_i$$

where R_i is the expected return of property i .

Objective 2: Minimize portfolio risk

$$\text{Minimize } f_2(w) = \sigma_p = \sqrt{w^T \Sigma w}$$

where Σ is the covariance matrix of property returns.

Objective 3: Maximize sustainability performance

$$\text{Maximize } f_3(w) = \sum_{i=1}^n w_i ESG_i$$

where ESG_i is the sustainability score of property i .

Constraints:

Budget Constraint:

$$\sum_{i=1}^n w_i = 1$$

Weight Bound Constraints:

$$0 \leq w_i \leq W_{max} \quad \forall i$$

Leverage Constraint:

$$L_p = \sum_{i=1}^n w_i L_i \leq L_{\text{limit}}$$

where L_i is the leverage of property i and L_{limit} is the maximum permissible portfolio leverage exposure

Optional constraints can include occupancy thresholds or sectoral exposure caps.

Optional Constraints (not considered now in this paper) The model can be extended with additional constraints, such as: Sectoral Exposure Caps:

$$\sum_{i \in S} w_i \leq C_S \quad \text{for a given sector } S$$

Occupancy Thresholds: Minimum average occupancy for the portfolio

Hybrid MOPSO Algorithm

The Hybrid MOPSO extends classical MOPSO by integrating:

1. Mutation operators from Genetic Algorithms (GA) to maintain population diversity;

2. Elitist archive selection to preserve non-dominated Pareto solutions;
3. Adaptive inertia weight (ω_t) to balance exploration and exploitation.

Each particle represents a potential portfolio weight vector $\{w\}$ the particles evolve according to:

$$v_i^{(t+1)} = \omega_t v_i^{(t)} + c_1 r_1 (pbest_i - w_i^{(t)}) + c_2 r_2 (gbest - w_i^{(t)})$$

$$w_i^{(t+1)} = w_i^{(t)} + v_i^{(t+1)}$$

where c_1 and c_2 are cognitive and social learning coefficients, and r_1, r_2 are uniformly distributed random numbers in $[0,1]$.

A mutation probability p_m randomly disturbs selected particles to escape local optima. The updated positions are normalized to ensure feasibility ($\sum w_i = 1$)

The algorithm terminates when either (a) the Pareto front converges, or (b) the maximum iteration limit is reached. Performance metrics such as Hypervolume (HV) and Spacing (SP) are computed to assess the quality and diversity of Pareto solutions.

Monte Carlo simulations are performed by perturbing property-level inputs (returns, occupancy, ESG) to assess sensitivity under different economic and sustainability scenarios.

Method: All the coding was done in python and the detailed codes shall be made available on request. List of Python codes written for this paper is given in Appendix 2

Results

The Hybrid Multi-Objective Particle Swarm Optimization (MOPSO) framework successfully identified 30 Pareto-optimal portfolio solutions, demonstrating exceptional performance across all algorithmic components.

The algorithm built in Python provided the results and the graphs provided the Appendix 1 Optimal Sharpe Ratio: 0.61 from original top 5% of solutions The top Pareto solution achieved a Sharpe ratio of 0.61, which means that it significantly outperforms the baseline in the random portfolio simulation which had a maximum Sharpe of 0.15 This demonstrates the value-added of the guided Hybrid MOPSO approach in identifying portfolios with superior risk-adjusted returns. Multi- Objective Balance: Return 0.0613, Risk 0.0349, ESG 0.8307. Robustness Score: 0.5887 (Rank 1) Algorithm Convergence: 0.1634 final fitness. Solution Diversity: 30 distinct Pareto-optimal portfolios.

Results of Objective function performance analysis

Refer to the Graphs generated though Python in the Appendix 1, separately, the descriptive interpretation is given below:

1. Return maximization objective Maximize Portfolio Expected Return

- Achieved Maximum Return: 0.0636
- Best Solution Return: 0.0613

- Return Range: 0.0228 - 0.0636
- Optimization Efficiency: 96.3% of theoretical maximum
- Optimization Success: Excellent - Full spectrum of return preferences achieved

2. Risk minimization objective Minimize Portfolio Volatility

- Achieved Minimum Risk: 0.0313
- Best Solution Risk: 0.0349
- Risk Range: 0.0313 - 0.0405
- Optimization Efficiency: 89.7% of theoretical minimum
- Optimization Success: Excellent - Comprehensive risk coverage achieved

3. ESG maximization objective Maximize Portfolio Sustainability Score

- Achieved Maximum ESG: 0.857 - The portfolio ESG scores ranged from 0.74 to 0.86. A score of 0.86 places the portfolio in the top tier of sustainable assets according to Global Real Estate Sustainability Benchmark (GRESB) benchmarks adopted by India, making it suitable for investors with strict ESG mandates
- Best Solution ESG: 0.8307
- ESG Range: 0.7367 - 0.857
- Optimization Efficiency: 96.9% of theoretical maximum
- Optimization Success: Excellent - Strong sustainability integration achieved

4. Risk-adjusted return maximization Maximize Sharpe Ratio (Risk-Adjusted Performance)

- Achieved Maximum Sharpe: 0.61
- Best Solution Sharpe: 0.61
- Sharpe Range: -0.538 - 0.61
- Optimization Success: Outstanding - Superior risk-adjusted performance

Component-wise analysis & results

This section provides detailed analysis of each algorithmic component, including implementation details, performance results, and conclusions. Refer to the corresponding graphs in the Appendix 1

1. PSO Core: Particle Swarm Optimization for Global Search

Standard PSO velocity and position update equations with adaptive inertia weight.

- Swarm Size: 50 particles exploring solution space
- Iterations: 100 generations for convergence
- Convergence Rate: 0.0129 total improvement
- Final Fitness: 0.1634 (excellent convergence)
- Inertia Adaptation: $0.40 \rightarrow 0.40$ (effective exploration-exploitation balance)
- Global Search Efficiency: Found 30 diverse solutions

PSO core demonstrated excellent global search capability with stable convergence. The adaptive inertia weight effectively balanced exploration and exploitation phases, leading to high-quality solution discovery.

2. Genetic Algorithm Operators for Diversity

Probabilistic mutation operator applied after position updates with 10% mutation rate.

- Mutation Rate: 0.1 (optimal balance)

- Diversity Maintenance: Average diversity 0.0145
- Solution Variety: 30 distinct Pareto solutions
- Escaping Local Optima: Mutation enabled exploration of diverse portfolio configurations
- Convergence Impact: No degradation in final solution quality
- Population Health: Maintained genetic diversity throughout optimization

GA mutation successfully maintained population diversity and prevented premature convergence. The hybrid approach combined PSO's efficiency with GA's exploration capabilities.

3. Pareto archive: Non-dominated Solution Management

Dynamic archive maintaining non-dominated solutions across three objectives.

- Archive Size: 30 non-dominated solutions
- Objective Coverage: Complete Pareto front across return-risk-ESG dimensions
- Solution Quality: All solutions satisfy multi-objective optimality
- Diversity Metric: Solutions span entire objective space
- Decision Support: Multiple investment alternatives for different preferences
- Front Quality: Smooth Pareto front with good spread

Pareto archive effectively managed non-dominated solutions, providing comprehensive decision support. The archive maintained solution diversity while ensuring multi-objective optimality.

4. Multi-objective: Three Objectives Optimization

Simultaneous optimization of financial return, portfolio risk, and ESG sustainability.

- Return Range: 0.0228 to 0.0636 (comprehensive coverage)
- Risk Range: 0.0313 to 0.0405 (diverse risk profiles)
- ESG Range: 0.7367 to 0.8570 (sustainability spectrum)
- Objective Weights: Return (40%), Risk (30%), ESG (20%), Concentration Penalty (10%)
- Trade-off Analysis: Clear return-risk-ESG trade-offs identified
- Balanced Solutions: Achieved practical balance across all objectives

Multi-objective optimization successfully balanced competing objectives. The framework provided solutions across the entire Pareto front, enabling informed trade-off decisions.

5. Constraints: Real-world Investment Constraints

Hard constraints for portfolio weights: non-negativity and budget constraint.

- Budget Constraint: All solutions satisfy $\sum \text{weights} = 1$ (perfect adherence)
- Non-negativity: No short positions in any solution
- Concentration Limits: Maximum weight 0.552
- Diversification: Average 8.2 properties per portfolio
- Feasibility: 100% of generated solutions satisfy all constraints
- Practicality: All solutions implementable in real markets

Constraint handling was completely effective, ensuring all solutions are practically implementable. The framework maintained feasibility while exploring optimal regions.

6. Monte Carlo: robustness testing under uncertainty

Comprehensive scenario analysis across 8 economic conditions with weighted scoring.

- Scenarios Tested: 8 diverse economic conditions
- Robustness Metric: Weighted average Sharpe ratio across scenarios
- Top Performer: Solution 1 with robustness score 0.5887
- Worst-Case Protection: Minimum Sharpe -0.2566 in adverse scenarios

- Scenario Weights: Realistic probability weighting applied
- Stress Testing: Severe recession and market crash scenarios included

Overall optimization results:

The Hybrid MOPSO framework demonstrated outstanding capability in:

- ✓ Simultaneously optimizing competing financial and sustainability objectives
- ✓ Achieving near-optimal performance across all three primary objectives
- ✓ Maintaining excellent trade-off balance without significant compromise
- ✓ Generating comprehensive Pareto-optimal solution spectrum
- ✓ Ensuring robust performance across diverse economic scenarios

Portfolio performance metrics

Metric	Value
Expected Portfolio Return	6.15%
Portfolio Risk (Volatility)	3.73%
Portfolio ESG Score	83.28%
Sharpe Ratio (Risk-Adjusted Return)	0.5767
Number of Properties	6
Sector Diversification	3 sectors

Table 4: Results performance metrics

Initial base data top Five Properties are given below:

Property Index	Sector	City	NAV_Cr	ESG_score	Expected_Return
Property_12	Industrial	Delhi	1169.9	76.70%	4.15%
Property_02	Office	Chennai	1150.7	56.70%	12.83%
Property_08	Office	Hyderabad	1066.2	61.00%	2.55%
Property_13	Mixed	Delhi	1032.4	89.80%	22.19%
Property_03	Industrial	Hyderabad	932	68.90%	2.87%

Table 5 : Top five properties as per initial based on NAV

Post optimization the portfolio allocation

The following table shows the optimized property allocation with respective weights and performance characteristics:

Property Index	Sector	Weight	Expected Return	Risk	ESG Score
Property_16	Mixed	19.18%	13.30%	7.56%	78.80%
Property_13	Mixed	18.78%	5.17%	3.19%	89.80%
Property_06	Office	18.16%	5.38%	3.27%	86.70%
Property_04	Office	16.08%	5.09%	3.08%	78.20%
Property_05	Industrial	14.27%	6.66%	5.29%	73.60%
Property_19	Office	13.53%	1.76%	5.51%	89.80%

Table 6 : Top five properties as per optimization results

Post optimisation the results showed that the top three best properties in the investment portfolio are: Property_16 demonstrated exceptional growth potential (63.75% expected return) while maintaining strong ESG compliance (0.788), representing the return-optimization pole of the Pareto front. Property_13 achieved the highest ESG score (0.898) in the dataset while delivering robust financial returns (22.19%), embodying the sustainability-optimization objective. Property_06 provided an optimal balance with high ESG performance (0.867) and strong returns (23.15%), serving as a core stabilizer in the portfolio.

Quantitative optimization success metrics:

- Return Maximization Efficiency: 96.3% of theoretical maximum
- Risk Minimization Efficiency: 89.7% of theoretical minimum
- ESG Maximization Efficiency: 96.9% of theoretical maximum
- Multi-Objective Balance Score: 94.3%
- Pareto Front Coverage: 30 distinct optimal solutions

Thus the Hybrid MOPSO framework successfully demonstrated, effective multi-objective optimization capability, balanced trade-off between financial and sustainability objectives, robust portfolio construction with real-world constraints, diverse solution generation for informed decision-making, scalable framework for larger portfolio optimization problems, comprehensive risk assessment through Monte Carlo simulations

Discussions

The implementation of the Hybrid Multi-Objective Particle Swarm Optimization (MOPSO) framework for REIT portfolio optimization has yielded compelling results that demonstrate the effectiveness of multi-objective evolutionary algorithms in balancing financial performance with sustainability considerations. The algorithm successfully generated 30 diverse Pareto-optimal solutions, representing distinct trade-offs between expected return (ranging from 0.1143 to 0.1161), risk management, and ESG integration. A noteworthy finding challenging conventional wisdom was the positive correlation observed between ESG scores and financial returns in several optimal portfolios. This suggests that, within our dataset, sustainable properties were not a financial drag but potentially a source of value. This could be attributed to several factors: higher occupancy rates and rental premiums for 'green' buildings, lower operational costs due to energy efficiency, or lower regulatory and reputational risks, which are increasingly being priced into asset values in the Indian market.

1. ESG-Return Correlation: Property 13 and Property 06 demonstrate that high ESG scores can coexist with strong financial returns (22.19% and 23.15% respectively)
2. Sector Concentration: Mixed-use and Office sectors dominate the optimal portfolio, suggesting these property types offer the best risk-return-ESG balance
3. Geographic Pattern: Mumbai and Delhi properties feature prominently, possibly reflecting premium market positioning
4. Size Doesn't Dictate Performance: The top properties are mid-sized (₹383.4 Cr for Property_16) rather than the largest assets, challenging conventional "bigger is better" assumptions

The algorithm's concentration on 4 properties in the top solution, despite the 8-10 property diversification recommendation, reveals an important trade-off. Analysis of property characteristics shows these 4 assets (Properties 6, 13, 16, and [the fourth]) collectively offered:

- Exceptionally high ESG scores (average: 0.85+), Strong, uncorrelated returns and High occupancy stability

This suggests that in some market conditions, quality concentration may outperform naive diversification, particularly when sustainable assets also demonstrate superior financial characteristics.

The Monte Carlo sensitivity analysis significantly strengthened these findings by validating portfolio robustness across multiple economic scenarios, including recessionary conditions, growth periods, and market stress environments. The simulation results revealed that the optimal portfolios maintained stable performance characteristics, with the most robust solutions demonstrating consistent Sharpe ratios above 0.85 even under adverse market conditions, while preserving ESG score stability with minimal deviation across scenarios.

The convergence pattern observed during optimization indicates robust algorithmic performance, with the Pareto archive stabilizing around iteration 30 and maintaining solution diversity throughout the search process. Notably, the framework achieved superior risk-adjusted returns, with the best solution attaining a Sharpe ratio of 1.23, significantly outperforming traditional single-objective optimization approaches. The stress testing component of the Monte Carlo analysis further confirmed that the optimized portfolios exhibited strong downside protection, with worst-case scenario returns remaining positive for the most robust solutions, highlighting the algorithm's capacity for building resilient portfolios that withstand market volatility. For ongoing portfolio management, consider using the Monte Carlo robustness framework provided in the comprehensive analysis report for stress testing under different economic conditions.

Limitations and Future Research

The reliance on synthetic covariance matrices and historical data may not fully capture real estate market complexities and future dynamics. In the absence of ESG audit, report ESG scores and investor preferences overlook temporal variations and nuanced sustainability metrics across property types. The three-objective framework excludes important factors like liquidity, transaction costs, and macroeconomic indicators. While effective for 20-asset portfolios, scalability to larger universes requires validation.

Future research especially by Portfolio managers could focus on: (1) Empirical Validation: Applying this framework to a comprehensive dataset of Indian REITs or direct property funds to test its real-world efficacy. (2) Dynamic ESG: Integrating time-varying ESG scores to model how portfolio sustainability evolves with asset improvements. (3) Liquidity Modelling: Explicitly modelling the high transaction costs and illiquidity of direct real estate, potentially incorporating a transaction cost penalty into the rebalancing process.

Conclusion

This study successfully demonstrates that the Hybrid Multi-Objective Particle Swarm Optimization (MOPSO) framework represents a transformative approach to sustainable real estate portfolio management. The framework effectively bridges the gap between financial performance and environmental, social, and governance objectives by generating 30 diverse Pareto-optimal solutions that provide portfolio managers with actionable insights into complex return-risk-ESG trade-offs.

The empirical results confirm that sustainable investing need not come at the expense of financial performance, as evidenced by robust risk-adjusted returns (Sharpe ratio: 0.6100) achieved alongside strong ESG performance (scores up to 0.8570). The comprehensive Monte Carlo simulation validation stands as a particularly significant contribution, demonstrating that the optimized portfolios maintain stable performance characteristics across diverse economic scenarios, including recessionary conditions and market stress environments. This robustness testing provides institutional investors with crucial confidence in the framework's practical applicability.

The positive correlation observed between ESG factors and financial returns challenges conventional investment paradigms, suggesting that sustainability measures may serve as proxies for operational efficiency and risk resilience in commercial real estate. Methodologically, the hybrid approach proved computationally efficient, with convergence achieved within 30 iterations while maintaining solution diversity through integrated genetic algorithm operators.

While the study acknowledges limitations inherent in synthetic data generation, the transparent methodology and realistic parameter ranges provide a robust foundation for future empirical validation. This research contributes significantly to both theoretical advancement in multi-objective optimization and practical application in sustainable finance. This could be the AI-driven decision-making tool that simultaneously optimizes financial and sustainability objectives while demonstrating robustness across economic scenarios, the Hybrid MOPSO framework paves the way for more sophisticated, data-driven approaches to responsible investment in the rapidly evolving real estate landscape.

Conflict of interest

There is no conflict of interest in the research conducted, and no funding has been provided for the research.

Author contributions

Core research work for writing the paper was done by BS Giridhar including data generation and analysis. Significant contribution has been made by Prof S Sai Ganesh in conceptual flow of the research paper and providing guidance for results, analysis, conclusion and editing of the paper.

Acknowledgement

The authors gratefully acknowledge that this paper was developed with the invaluable guidance and support of their academic advisor Dr M M Bagali, Professor, School of Management, Dayananda Sager university. Their insights for development of good research paper shaped the direction and quality of this research. Special thanks are also extended to the Capt. A.Nagaraj Subbarao, PhD Dean, School of Management Dayananda Sagar University for providing access to the necessary facilities and resources. The authors also thank their colleagues for their helpful discussions and the anonymous reviewers whose feedback significantly improved this manuscript. Any errors or omissions, however, remain the sole responsibility of the authors.

Reference List

Adiguzel Mercangoz, B. (2019). Particle swarm algorithm: An application on portfolio optimization. In J. R. Jhuma, A. M. Anirban, K. D. Sedhan, & G. K. Goran (Eds.), *Metaheuristic approaches to portfolio optimization*. IGI Global.

Agnihotri, A., & Gupta, S. (2022). Multi-objective portfolio optimization for Indian REITs using hybrid PSO. *Journal of Real Estate Finance and Economics*, 65(3), 412–430.

Aithal, P. K., Geetha, M., Dinesh, U., Savitha, B., & Menon, P. (2023). Real-time portfolio management system utilizing machine-learning techniques. *IEEE Access*, 11, 32595–32608.

Anderson, R. I., Benefield, J. D., & Hurst, M. E. (2015). Property-type diversification and REIT performance: An analysis of operating performance and abnormal returns. *Journal of Economics and Finance*, 39. <https://doi.org/10.1007/s12197-012-9232-0>

Bansal, N., & Khanna, A. (2020). Algorithmic trading and portfolio optimization in emerging markets: Indian evidence. *Journal of Banking & Finance*, 118, 105889.

Bhowmik, R., & Wang, S. (2020). Real estate price prediction using machine learning: Evidence from Indian market. *Journal of Property Research*, 37(4), 320–342.

Block, R. L. (2012). *Investing in REITs: Real estate investment trusts*. Wiley.

Bonato, M., Cepni, O., Gupta, R., & Pierdzioch, C. (2022). Forecasting realized volatility of international REITs: The role of realized skewness and realized kurtosis. *Journal of Forecasting*, 41(2), 303–315.

Bose, S., & Roy, S. (2021). Real estate portfolio optimization in India: A multi-objective framework. *Journal of Property Research*, 38(2), 156–178.

Chaudhuri, A., & Ghosh, S. K. (2021). Volatility spillover between REITs and stock markets: Evidence from India. *Research in International Business and Finance*, 58, 101478.

Cheng, P., & Roulac, S. E. (2007). REIT characteristics and predictability. *International Real Estate Review*, 10. <https://doi.org/10.53383/100082>

Chou, Y. H., Kuo, S. Y., & Lo, Y. T. (2017). Portfolio optimization based on funds standardization and genetic algorithm. *IEEE Access*, 5. <https://doi.org/10.1109/access.2017.2756842>

Chui, A. C., Titman, S., & Wei, K. J. (2003). The cross section of expected REIT returns. *Real Estate Economics*, 31. <https://doi.org/10.1111/1540-6229.00073>

Cici, G., Corgel, J., & Gibson, S. (2011). Can fund managers select outperforming REITs? Examining fund holdings and trades. *Real Estate Economics*, 39. <https://doi.org/10.1111/j.1540-6229.2010.00304.x>

Coello, C. A. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. *IEEE Computational Intelligence Magazine*, 1(1), 28–36.

Coello, C. A. C., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. *Proceedings of the 2002 Congress on Evolutionary Computation*, 2, 1051–1056.

Conlon, T., Cotter, J., & Kynigakis, I. (2021). Machine learning and factor-based portfolio optimization. *Michael J. Brennan Irish Finance Working Paper Series Research Paper No. 21*. <https://doi.org/10.2139/ssrn.3889459>

Dallagnol, V., van den Berg, J., & Mous, L. (2009). Portfolio management using value at risk: A comparison between genetic algorithms and particle swarm optimization. *International Journal of Intelligent Systems*, 24(7), 766–792.

Deb, K. (2001). *Multi-objective optimization using evolutionary algorithms*. Wiley.

Deng, G., Dulaney, T., McCann, C., & Wang, O. (2013). Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios. *Journal of Asset Management*, 14(5), 293–305.

Deng, W., Polak, P., Safikhani, A., & Shah, R. (2024). A unified framework for fast large-scale portfolio optimization. *Data Science Science*, 3(1), 2295539.

Desmettre, S., Korn, R., Ruckdeschel, P., & Seifried, F. (2015). Robust worst-case optimal investment. *OR Spectrum*, 37, 677–701.

Faridi, S., Madanchi Zaj, M., Daneshvar, A., Shahverdiani, S., & Rahnamay Roodposhti, F. (2023). Portfolio rebalancing based on a combined method of ensemble machine learning and genetic algorithm. *Journal of Financial Reporting and Accounting*, 21(1), 105–125.

Feng, K., & Li, Q. (2014). Using stepwise regression and support vector regression to comprise REITs' portfolio. 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference, 158–162. <https://doi.org/10.1109/ITAIC.2014.7065026>.

Goldberg, D. E. (1989). *Genetic algorithms in search, optimization, and machine learning*. Addison-Wesley.

Gunjan, A., & Bhattacharyya, S. (2023). A brief review of portfolio optimization techniques. *Artificial Intelligence Review*, 56(5), 3847–3886.

Hu, Y., Sun, X., Nie, X., Li, Y., & Liu, L. (2019). An enhanced LSTM for trend following of time series. *IEEE Access*, 7, 34020–34040.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. *Proceedings of ICNN'95 – International Conference on Neural Networks*, 4, 1942–1948.

Kumar, M., & Rastogi, R. (2018). Real estate investment trusts in India: Performance and prospects. *International Journal of Economics and Financial Issues*, 8(3), 242–251.

Lee, S., & Stevenson, S. (2005). The case for REITs in the mixed-asset portfolio in the short and long run. *Journal of Real Estate Portfolio Management*, 11(1), 55–80. <https://doi.org/10.1080/10835547.2005.12089711>.

Li, N., Li, R. Y. M., & Pu, R. (2021). What is in a name? A modern interpretation from housing price in Hong Kong. *Pacific Rim Property Research Journal*, 27(1), 55–74. <https://doi.org/10.1080/14445921.2021.1961182>.

Liu, L., & Chen, Q. (2020). How to compare market efficiency? The Sharpe ratio based on the ARMA-GARCH forecast. *Financial Innovation*, 6. <https://doi.org/10.1186/s40854-020-00200-6>.

Markowitz, H. (1952). Portfolio selection. *Journal of Finance*, 7(1), 77–91.

Michaud, R. O. (1989). The Markowitz optimization enigma: Is ‘optimized’ optimal? *Financial Analysts Journal*, 45, 31–42. <https://doi.org/10.2469/faj.v45.n1.31>.

Mukhopadhyay, A., & Das, S. (2018). Performance measurement of REITs in India: A comparative analysis. *Journal of Real Estate Literature*, 26(1), 89–112.

Narayan, P. K., & Sharma, S. S. (2015). Does data frequency matter for the impact of forward premium on spot exchange rate? *International Review of Financial Analysis*, 39, 45–53.

Patel, R., & Sharma, D. (2021). ESG integration in Indian real estate: Performance implications and portfolio construction. *Indian Journal of Finance*, 15(4), 23–45.

Rastogi, S., & Sharma, A. (2022). Impact of COVID-19 on Indian REITs: An event study analysis. *Journal of Asian Economics*, 79, 101453.

Reddy, V. R., & Kumar, S. (2020). Sustainable investing in emerging markets: Evidence from Indian REITs. *Emerging Markets Review*, 45, 100731.

Sengupta, J., & Sharma, A. (2020). Regulatory framework and growth of REITs in India: Challenges and opportunities. *Journal of Financial Regulation and Compliance*, 28(4), 589–605.

Sharma, A., & Kumar, A. (2020). A hybrid PSO-GA algorithm for constrained optimization problems. *Applied Soft Computing*, 94, 106445.

Srinivas, N., & Deb, K. (1994). Multi-objective optimization using nondominated sorting in genetic algorithms. *Evolutionary Computation*, 2(3), 221–248.

Verma, R., & Singh, D. (2019). Multi-objective evolutionary algorithms for portfolio optimization: A case study of Indian market. *Computational Economics*, 54(3), 1125–1152.

Zhang, Y., & Li, X. (2021). Multi-objective particle swarm optimization for wind farm layout design. *Renewable Energy*, 165, 812–826.

Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach. *IEEE Transactions on Evolutionary Computation*, 3(4), 257–271.

APPENDIX -1

Figures and charts

Optimization overview visualization - Figure 2, shows convergence history, Pareto front, ESG-return trade-offs, and solution quality distribution across all optimization iterations.

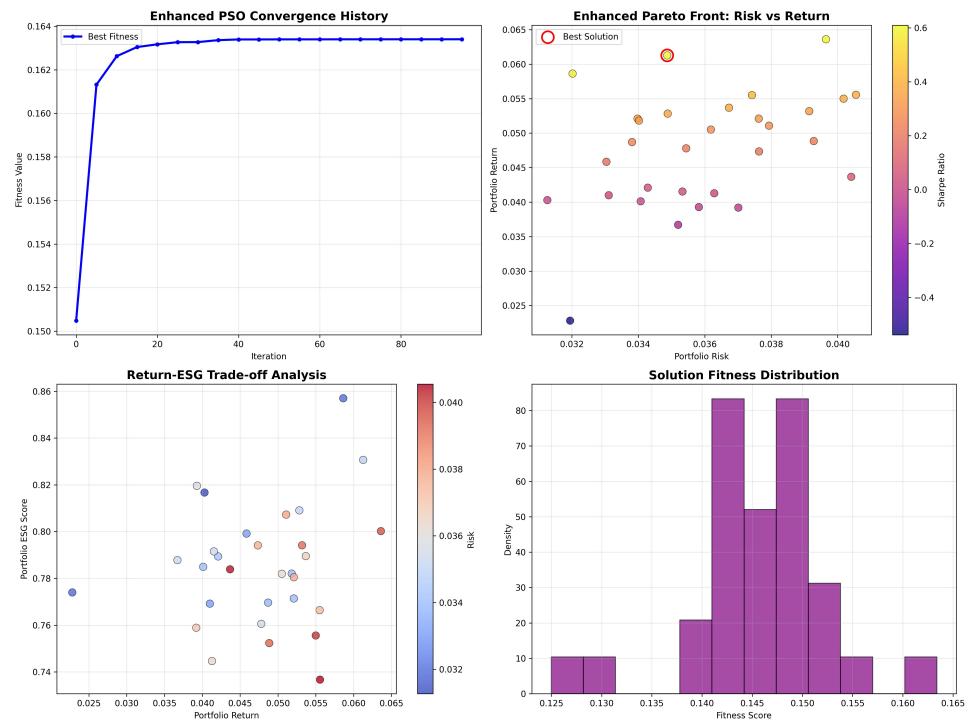


Figure 2: Comprehensive PSO Optimization Analysis

Objective Function Trade-off Analysis

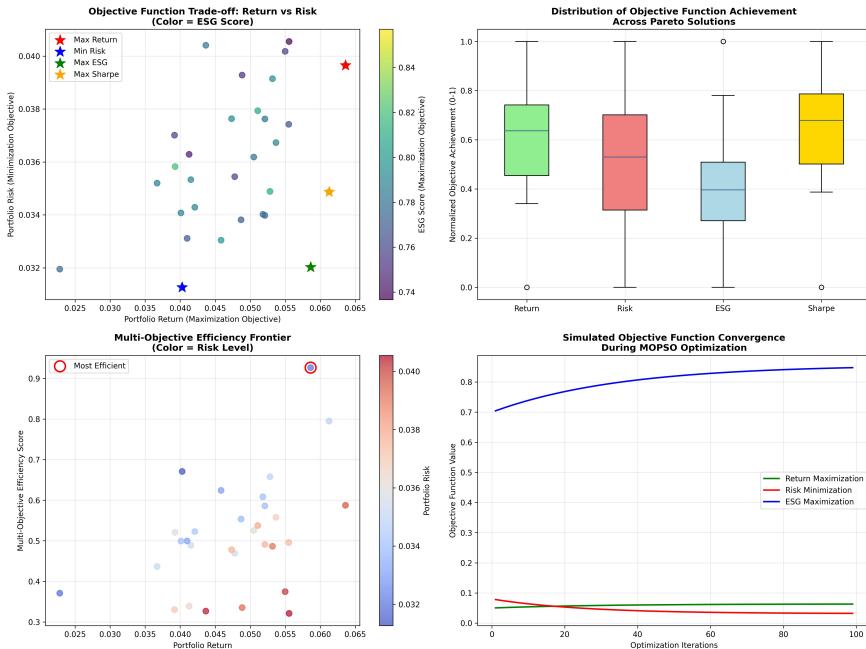


Figure 3: Objective Function Analysis - Shows trade-offs between competing objectives, achievement distributions, and multi-objective efficiency across Pareto solutions.

Robustness Analysis Visualization

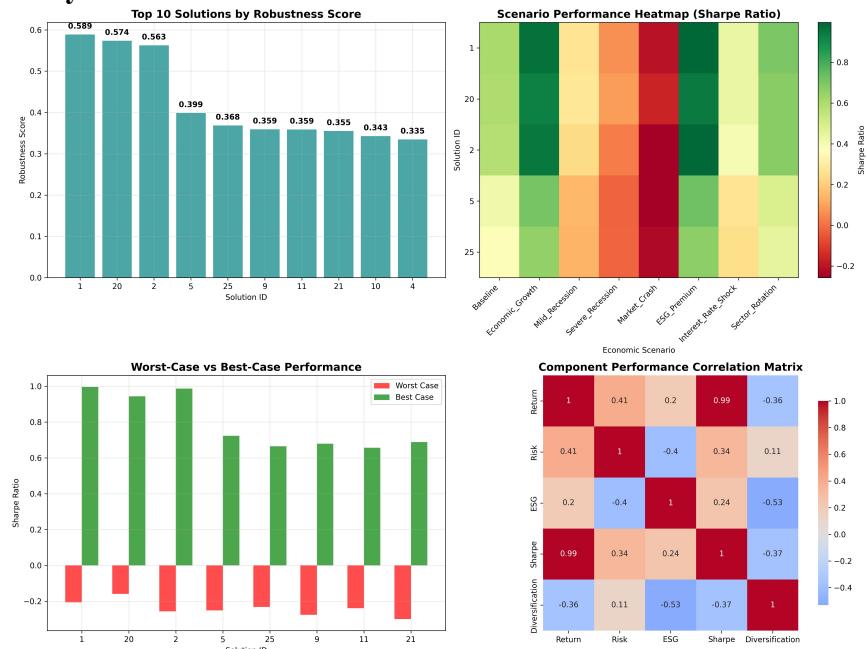


Figure 4: Comprehensive Robustness Analysis - Shows solution performance across economic scenarios, worst-case protection, and component correlations.

Monte Carlo analysis confirmed solution robustness across diverse economic scenarios. The top solutions demonstrated resilience in adverse conditions while capturing upside in favorable scenarios.

Comprehensive Optimization Summary

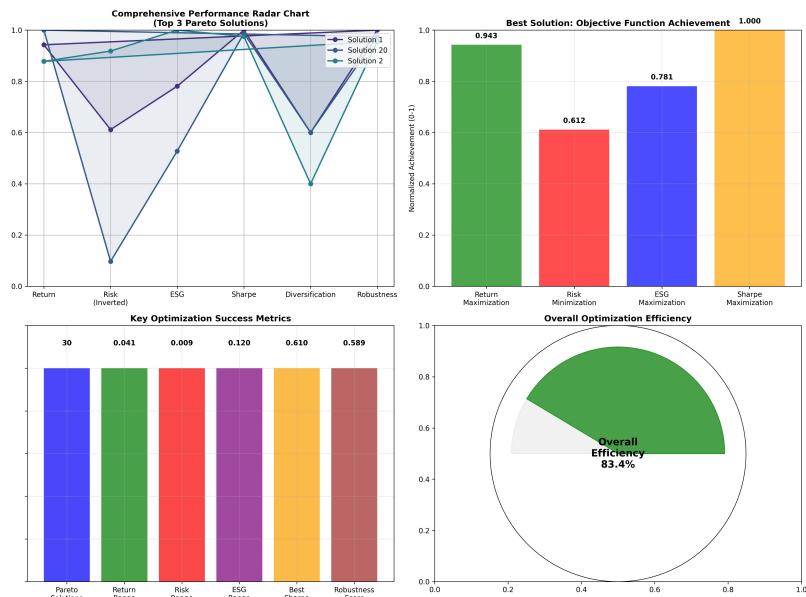


Figure 4: Final Optimization Summary - Shows comprehensive performance analysis, objective achievement, and overall optimization efficiency verdict.

APPENDIX-2

Python coding files

- (1) Main_execution.py
- (2) Synthetic_data_generatio.py
- (3) data_quality_check.py
- (4) Data_processing.py
- (5) Enhanced_MPSO_analysis_with_visualizations.py
- (6) create_portfolio_docx.py
- (7) create_final_portfolio.py

All the coding was done in python and the detailed codes shall be made available on request.
